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Abstract— We employ a previously developed statistical
method to evaluate the performance of the Sentinel-3 Ocean
and Land Colour Instrument (OLCI) global ocean color data
relying on the temporal stability of the retrievals. We analyze
the normalized water-leaving reflectance ρwN(λ) spectra gener-
ated by the National Oceanic and Atmospheric Administration
(NOAA) Multi-Sensor Level-1 to Level-2 (MSL12) ocean color
data processing system from the OLCI measurements and the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT)-Instrument Processing Facility for OLCI
Level-2 (IPF-OL-2) OLCI reflectance ρwN(λ) spectra. The devi-
ations in ρwN(λ) spectra from temporally and spatially averaged
baseline data are statistically evaluated corresponding to various
parameters, including the solar-sensor geometry, various ancil-
lary data (i.e., surface wind speed, sea-level atmospheric pressure,
water vapor amount, and ozone concentration), and other related
parameters. Our results show that, under most conditions,
both NOAA-MSL12 and EUMETSAT-IPF-OL-2 data processing
systems produce statistically consistent ocean color products in
the open ocean with respect to all corresponding parameters
analyzed but with some underestimates of ρwN(λ) spectra by
EUMETSAT retrievals in moderate sun glint conditions being
the notable exception.

Index Terms— European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT), European Space Agency
(ESA), Multi-Sensor Level-1 to Level-2 (MSL12), National
Oceanic and Atmospheric Administration (NOAA), Ocean and
Land Colour Instrument (OLCI), ocean color remote sensing,
Visible Infrared Imaging Radiometer Suite (VIIRS).
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I. INTRODUCTION

AN INCREASED awareness of global environmental
changes and interconnections has prompted growing

interest and investments in global Earth observation research
programs, which increasingly rely on satellite observations.
The EU Copernicus program (https://www.copernicus.eu),
including the Sentinel satellite missions, is designed to provide
comprehensive multidecadal global atmosphere, marine, and
land observations. Sentinel-3 is part of the Copernicus program
focused on the global ocean and land surface observations [1].
Sentinel-3A was launched on February 16, 2016, and carries
an instrument suite, including the Ocean and Land Colour
Instrument (OLCI) [2]. OLCI is the next-generation successor
of the Medium Resolution Spectrometer (MERIS) on the
ENVISAT mission [3]. Sentinel-3A is flying in a polar Sun-
synchronous orbit with morning local overpass time, and the
OLCI field-of-view is tilted slightly westward to reduce the
sun glint in the observations. Sentinel-3B, carrying the same
set of instruments, was launched on April 24, 2018, and is
flying in the same orbital plane with a phase shift of 140◦.
Two more Sentinel-3 satellites are expected to launch within
this decade. With sufficiently high spatial resolution for ocean
observations, important additional spectral bands, full global
coverage in two days by two satellite sensors, and long-term
mission continuity ensured by future launches, the Sentinel-3
OLCI ocean color observations are bound to be indispensable
for monitoring and research of global aquatic ecosystems.

With the Sentinel-3 mission well underway, work contin-
ues on OLCI sensor calibration, satellite ocean color mea-
surement validation, and retrieval algorithm evaluation and
further development [4], [5], [6], [7]. Indeed, a recent study
validates the most recently reprocessed OLCI ocean color
radiometric data (the Operational Baseline Collection-3) over
a wide range of coastal water types [8]. The process of
deriving the ocean color properties from satellite-measured
top-of-atmosphere (TOA) radiance spectra is first managed
by the atmospheric correction, which involves accounting for
various optical scattering and absorption processes in the
atmosphere, water, and at the water surface, and retrieves
multispectral water-leaving reflectance [9], [10], [11], [12].
Instrument calibration and atmospheric correction biases are
rectified by an on-orbit system vicarious calibration with
in situ optical measurements, such as those recorded using
the Marine Optical Buoy (MOBY) in the waters off Hawaii
[13], [14], [15], [16], [17], [18]. The water-leaving reflectance
products are then converted to bio-optical products, such
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as chlorophyll-a (Chl-a) concentrations. Due to the overall
complexity of ocean color processing, independent means of
product and retrieval algorithm validation are crucial to data
quality and accuracy assurance.

Nevertheless, in situ measurements are comparatively
scarce. There are relatively few locations with continuous
observations (usually in coastal and inland environments);
thus, most locations are never directly sampled. In addition,
in situ data are also subject to measurement uncertainties and
data quality requirements [16], [19], [20], [21]. In this situ-
ation, the intersensor comparisons are useful [22], [23], [24]
but may not always be conclusive in attributing data quality
issues to a particular sensor.

Recently, Mikelsons et al. [25] introduced a statistical
evaluation approach of satellite ocean color data that relies
on gradual temporal changes of water properties in most
parts of the global open ocean. The utility of this method
was demonstrated by analyzing the ocean color data derived
from the Visible Infrared Imaging Radiometer Suite (VIIRS)
measurements and searching for potential biases in data depen-
dence on various parameters, including the solar-sensor geom-
etry, as well as atmospheric and other local environmental
conditions [25].

Like OLCI on the Sentinel-3 mission, VIIRS is part of
the multidecade Earth-observing satellite sensor series [26],
following the Moderate Resolution Imaging Spectroradiometer
(MODIS) on the Terra and Aqua satellites [27]. The first
VIIRS in this satellite series, the Suomi National Polar-
orbiting Partnership (SNPP), was launched on October 28,
2011. Another VIIRS is part of the National Oceanic and
Atmospheric Administration (NOAA)-20 satellite, launched
on November 18, 2017. The third VIIRS on the Joint Polar
Satellite System (JPSS)-2 (now NOAA-21) satellite was just
successfully launched on November 10, 2022. Significant
efforts have been made toward VIIRS ocean color algorithms’
development and improvement [28], [29], [30], as well as
VIIRS ocean color data evaluation and validation [31], [32],
[33], [34].

The Multi-Sensor Level-1 to Level-2 (MSL12) software
package is the enterprise ocean color data product retrieval
system used at NOAA. The MSL12 has been used for deriving
global ocean color products for several satellite sensors [23],
beginning with the global ocean color data production for
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) [35].
Recently, it has been adopted to derive ocean color data
from OLCI observations and has been used to routinely
generate OLCI global ocean color products. In fact, the OLCI-
derived ocean color data have been used to generate improved
global gap-free ocean color products from multisatellite
measurements [36].

In this work, we employ the methodology designed for
VIIRS ocean color data statistical analysis and apply it to
the Sentinel-3A OLCI ocean color observations, derived by
the two distinct retrieval algorithms (or ocean color data
processing suites), namely, the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT)
Instrument Processing Facility for OLCI Level-2 (IPF-OL-
2) ocean color data products (the most recently reprocessed
data, i.e., the Operational Baseline Collection-3) and those

from NOAA-MSL12. The only changes in the statistical
methodology stem from differences in sensor design between
OLCI and VIIRS.

Like MERIS, OLCI is a push-broom imaging spectrome-
ter, whereas MODIS and VIIRS are whisk-broom scanning
spectroradiometers. This difference has some significance for
ocean color retrievals. For example, the along-track striping
artifacts that are common in MODIS and VIIRS data [37] are
absent in OLCI retrievals. However, OLCI data may contain
cross-track camera discontinuities. Each OLCI cross-track
retrieval is captured by five cameras arranged in a fan shape
configuration, and every camera’s CCD response is sometimes
referenced as cross-track detectors. In general, each of the
detectors has a slightly different spectral response function.
On the absolute scale, these differences are rather small and
accounted for in the Level-2 data processing by the so-called
smile correction [38]. However, the residual cross-track effects
can be amplified during the atmospheric correction process,
especially for ocean color retrievals where the water-leaving
reflectance signal is quite low compared to a more reflective
land surface [11], [39]. In practice, the differences between the
OLCI detectors from adjacent cameras are the most prominent
[38], [39]. OLCI cross-track coverage is resampled on an Earth
grid from 740 detectors per camera and, from here on, are
called cross-swath “samples.”

The remainder of this article is structured as follows.
We briefly review the two OLCI ocean color data processors
and datasets analyzed in this study and explain the main
steps of the methodology in Section II. We then show the
results of analysis for both OLCI datasets from the NOAA-
MSL12 and EUMETSAT-IPF-OL-2 in Section III, following
with discussion in Section IV before presenting the conclu-
sions in Section V.

II. METHODOLOGY

A. MSL12 Ocean Color Data Processing System

The MSL12 is based on the NASA SeaWiFS Data Analysis
System (SeaDAS) [40] version 4.6 with several improvements
and modifications, and is updated to be able to process
data from a range of more recent satellite-based ocean color
instruments. MSL12 has been used to routinely process and
generate the global ocean color data products from VIIRS
sensors onboard the SNPP and NOAA-20 satellites since the
mission started [31]. Recent updates have extended MSL12
capabilities to also process data from the OLCI sensor onboard
the Sentinel-3 satellite series. As the name suggests, MSL12
is a rather general data processing system and uses the same
thoroughly tested algorithms for many spaceborne sensors.
The MSL12 data analyzed in this study were produced using
the near-infrared (NIR)-based atmospheric correction with a
specific correction algorithm for the NIR water reflectance
contributions [28], [31]. However, it is noted that the NIR
water reflectance correction is not essential for open oceans
due to the overall low NIR reflectance in clear waters. In addi-
tion, the improved land mask has been used in MSL12 for all
satellite data processing [41].

The process of atmospheric correction follows the con-
ventional Gordon and Wang [9] approach with the improved
Wang [10] lookup tables and data processing implementation
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[11], [12], including the NIR reflectance correction [28],
[42], [43], [44], cloud masking [45], stray light identifica-
tion [46], and corrections for whitecaps [47], [48] and sun glint
[49], [50]. During this process, the MSL12 converts satellite-
measured TOA radiances into the normalized water-leaving
radiance spectra, nLw(λ) [51], [52], [53], which are used as
input data to subsequently obtain ocean/water biological and
biogeochemical properties, e.g., Chl-a concentration [29], [54],
[55], water diffuse attenuation coefficient for downwelling
plane irradiance at 490 nm Kd (490) and photosynthetically
available radiation (PAR) Kd (PAR) [56], [57], [58], and
suspended particulate matter (SPM) concentration [30], [59].
In addition, MSL12 also produces several useful intermediate
data products, characterizing the atmospheric conditions and
aerosol properties, e.g., the aerosol optical depth (AOD) and
the Ångström exponent coefficient [9], [10], [60], [61], [62].
For a better comparison across the spectrum, the MSL12-
derived nLw(λ) spectra are converted to the normalized water-
leaving reflectance ρwN(λ) spectra, which are defined as
ρwN(λ) = π nLw(λ)/F0(λ), where F0(λ) is the extraterrestrial
solar irradiance [63].

In addition to the sensor-measured TOA radiances,
atmospheric correction also requires complete geolocation
records (latitude and longitude), the relevant retrieval geometry
angles (solar- and sensor-zenith angles, and relative azimuth
angle), as well as information about the atmospheric and ocean
surface conditions, such as the total column ozone amount, the
sea-level atmospheric pressure, the sea surface wind speed, and
the total column water vapor amount [64].

B. EUMETSAT Retrieval Algorithms for OLCI

As OLCI follows the earlier MERIS sensor, the design of
the atmospheric correction algorithm relies on the heritage
approaches developed for MERIS [62], [65], [66], [67]
and the updates introduced with Collection-3 (https://www.
eumetsat.int/media/47794). The Level-2 preprocessing
includes cloud flagging, a gaseous correction (https://www.
eumetsat.int/media/40899), and corrections for sun glint
(https://www.eumetsat.int/media/38633) and white cap
(https://www.eumetsat.int/media/47794) contributions [48],
[68], [69]. After the molecular Rayleigh scattering
pressure adjustment, the smile correction is performed
to eliminate varying pixel spectral responses across
each OLCI camera field of view (https://www.eumetsat.
int/media/38634). System vicarious calibration gains are
then applied (https://www.eumetsat.int/ocean-colour-system-
vicarious-calibration-tool), followed by the bright pixel
correction, which eliminates potential contributions of water
reflectance in the NIR bands (https://www.eumetsat.int/
OC-BPC). The follow-on atmospheric correction assumes that
all remaining signal in the NIR comes exclusively from the
atmosphere, and it uses a combination of bands at 778 and
865 nm to select the aerosol models and the approach
from Antoine and Morel [65] to remove the scattering and
absorption by aerosols and the Rayleigh scattering by air
molecules; see ATBDs at https://www.eumetsat.int/ocean-
colour-resources and Collection-3 report at https://www.
eumetsat.int/media/47794. Similarly, as for the NOAA-

MSL12, the EUMETSAT-IPF-OL-2 OLCI primary ocean
color data products are ρwN(λ) spectra, yet no correction
is included for the bidirectional reflectance distribution
function (BRDF) effects both in water surface (i.e., the
� factor) and in-water (i.e., the f/Q factor) [11], [51],
[52], [53]. In fact, we have directly used EUMETSAT-IPF-
OL-2 produced Level-2 ocean color data and generated
Level-3 data without applying the BRDF corrections.
On the other hand, the MSL12-derived ρwN(λ) spectra
have applied corrections for both ocean/water surface (i.e.,
�, valid for global waters) and in-water (i.e., f/Q factor,
valid for open oceans) BRDF effects [11], [51], [52], [53].
The reason for not applying the full BRDF correction in
IPF-OL-2 ρwN(λ) products is that most ocean color data
users have been historically interested in coastal complex
waters for which the current BRDF correction is not suitable.
To retrieve the bio-optical products, EUMETSAT-IPF-OL-2
does, however, apply the complete BRDF correction in
the internal processing. The products derived from ρwN(λ)
include Chl-a concentration using the OC4ME algorithm
[70], [71] combined with the Chl-a index (CI) method [55],
the water diffuse attenuation coefficient at 490 nm Kd(490),
and others. In addition, a set of data quality flags is provided,
which indicates various retrieval conditions and can be used
to narrow down on the more reliable ocean color retrievals.
In this study, we analyze the EUMETSAT-produced Sentinel-
3A OLCI Level-2 ocean color data with the most recent
processing baseline, Collection-3 (OL_L2M.003.01), released
in spring 2021 (https://www.eumetsat.int/media/48139 and
https://www.eumetsat.int/media/47794).

An overview and a comparison of the two processing
systems are shown in Table I, which lists brief descriptions and
references for the algorithms and datasets used in the major
parts of the retrieval process.

C. Evaluation Approach and Criteria

We use the MSL12 to process the Sentinel-3A OLCI
Level-1B data and generate global daily ocean color product
data for the entire 2019 year. We also perform identical
analysis using the EUMETSAT-IPF-OL-2 Sentinel-3A OLCI
Level-2 daily ocean color data for the same time period.

We follow the method established by Mikelsons et al. [25]
and briefly summarize the main steps of the analysis. In the
first step, the Level-2 ρwN(λ) data are spatially averaged to
Level-3 products [72] for each day of retrievals. A bin size of
9 km is used as it provides sufficient resolution to capture the
gradual changes in the open ocean.

When binning the MSL12-produced ρwN(λ) data, Level-2
data quality flags are used to avoid retrievals affected
by various adverse conditions, e.g., cloud shadow/stray
light [46], large sun glint contamination [49], [50], and
very high aerosol concentrations. The EUMETSAT-produced
ocean color data also include a set of quality flags, which we
use to discard retrievals with adverse conditions. Specifically,
we use the EUMETSAT recommended set of flags in our
analysis [73]. For the analysis of the most recent Collection-3
data, the following flags were applied: CLOUD, CLOUD_
AMBIGUOUS, CLOUD_MARGIN, INVALID, COSMETIC,
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TABLE I

COMPARISON OF THE NOAA-MSL12 AND THE EUMETSAT IPF-OL-2 OCEAN COLOR DATA PROCESSING SYSTEMS

SATURATED, SUSPECT, HISOLZEN, HIGHGLINT,
SNOW_ICE, AC_FAIL, WHITECAPS, ADJAC, RWNEG_02,
RWNEG_03, RWNEG_04, RWNEG_05, RWNEG_06,
RWNEG_07, RWNEG_08, and OC4ME_FAIL. However,
we retain the Level-2 retrievals with a high solar-zenith angle
to evaluate the data quality with respect to this parameter but
apply HISOLZEN in the Level-3 binning for the rest of the
analysis.

We note that conditions under which various quality flags
are set may be different between the MSL12 and IPF-OL-2
retrieval algorithms. In fact, even the meanings of some quality
flags may differ between the two retrieval algorithms. This can
lead to some differences in ocean color data coverage between
the two datasets. However, it is noted that we apply the most
optimal flags in the two data processing systems recommended
by the NOAA and EUMETSAT ocean color teams.

Once all Level-2 ρwN(λ) data are spatially binned into the
daily Level-3 data, we calculate a weighted temporal average
for each of the spatial data bins. We use the period of time
average Ta = 27 days, including 13 days before and 13 days
after a specific day. In fact, the time interval Ta is chosen
to reflect the OLCI orbital revisit cycle. The weights for the
temporal average are chosen as w(�t) = cos[π�t/(Ta+ 1)],
where �t ∈ [−13, . . . , 13] is the number of days between a
day within the 27-day interval and a particular day for which
the moving average is calculated.

The averaged spatial–temporal Level-3 data are then used
as the baseline reference data for intercomparisons with the
Level-2 ρwN(λ) data [term ρ

(REF)
wN in (1)]. Importantly, the

baseline reference data are derived for each of the two
datasets separately. Due to a narrower OLCI swath width
(compared to VIIRS), the sensor-zenith angle does not exceed
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around 56◦. Thus, excessively large (>60◦) values of sensor-
zenith angle, associated with degraded retrieval accuracy [25],
are never encountered with OLCI.

To analyze the consistency of retrievals from different
locations and times, we calculate the ρwN(λ) anomaly,
�ρwN(λ), i.e.,

�ρwN(λ|t, x) = ρwN(λ|t, x) − ρ
(REF)
wN (λ|t, x), (1)

where ρwN(λ|t, x) are the daily Level-2 ocean color retrievals

and ρ
(REF)
wN (λ|t, x) denotes the corresponding values of the

Level-3 baseline reference data at the same spatial location x
on the same day (t). For brevity, we drop the temporal and spa-
tial labels (t, x) in further discussion. Since any instrument and
retrieval artifacts are averaged out in the Level-3 baseline ref-
erence data, while retaining the long temporal and spatial scale
natural variability of ρwN(λ), the anomaly �ρwN(λ) essentially
represents the retrieval artifacts and short temporal and spatial
scale variation of ρwN(λ) versus its mean. The anomaly
�ρwN(λ) should, therefore, be treated as a relative quantity
because the actual absolute value of ρwN(λ) is not known. It is
again underlined that ρwN(λ) from the EUMETSAT-IPF-OL-2
processing is not fully BRDF corrected, while the correction
is included in NOAA-MSL12 products.

Again, the same set of data quality flags is applied to
exclude poor quality Level-2 ρwN(λ) data. As in the previous
work [25], we also restrict ρwN(λ) data to open oceans with
water depths larger than 1 km. The ρwN(λ) anomaly data are
then aggregated into histograms over the relevant ranges of
different geometrical, physical, and ancillary parameters pi .
The mean �ρwN(λ, pi) for each of these parameters is com-
puted for all data points within the same value range of
the parameter pi . The entire range of each parameter pi is
discretized into 50–200 equal size bins to capture changes in
mean �ρwN(λ, pi) while also ensuring a sufficient amount
of data for statistics within each bin. Other statistical mea-
sures (such as median) describing the distribution of ρwN(λ)
anomalies within the same parameter pi bin can also be
used in the analysis. We also study how the number of data
points is distributed across the range of each of the dependent
parameters pi .

Finally, the consistency and the quality of the ocean color
retrievals can be gauged by evaluating the dependence of
the mean anomaly �ρwN(λ, pi) [from here on shortened to
�ρwN(λ)] with respect to all parameters pi . High absolute
values of the mean anomaly �ρwN(λ) (relative to the relevant
accuracy requirements) imply a systematic bias of ρwN(λ)
spectra for the particular values of the dependent variable pi .
For ocean color remote sensing, the absolute value of the
anomaly should be compared to the accuracy requirement
of sensor-measured ρwN(λ) for the open ocean, which states
that �ρwN(λ) at the blue band (443 nm) should be less than
∼0.001 (or 5%) [9], [10], [11], considering that ρ

(REF)
wN is not

a ground truth but only a relative reference.

III. RESULTS

As in the previous study for VIIRS retrievals [25], we divide
the relevant parameters into three groups, corresponding to

TABLE II

MEAN ABSOLUTE DEVIATION OF �ρwN(λ) FOR LOW AND
INTERMEDIATE VALUES OF SENSOR-ZENITH ANGLE (θ)

WITH THE NUMBER OF LEVEL-2 RETRIEVALS

USED FOR CALCULATIONS (NUM)

the geometrical parameters, ancillary parameters character-
izing atmospheric and ocean surface conditions, and other
intermediate parameters.

A. Solar-Sensor Geometry

The data consistency of OLCI retrievals is first evalu-
ated with respect to the solar and sensor geometry. The
results obtained with NOAA-MSL12 and EUMETSAT-IPF-
OL-2 retrieval algorithms are shown in Figs. 1 and 2, respec-
tively. The dependence on the sensor-zenith angle in MSL12
retrievals [see Fig. 1(a)] reveals nonmonotonic behavior asso-
ciated with differences among the five cameras spanning the
OLCI swath. This behavior is more evident in the dependence
on the cross-swath sample number [see Fig. 1(b)], where the
discontinuities between the samples from adjacent cameras
are more obvious. The samples are numbered from the west
(sample 0) to east (sample 4860) directions. Due to the OLCI
sensor tilt away from high sun glint conditions on the eastern
side, the nadir roughly corresponds to sample 3620. Thus,
most of the swath is pointing west of the nadir, including
the samples corresponding to larger values of sensor-zenith
angle. Unsurprisingly, samples with larger sensor-zenith angles
in the west part of the swath also deviate more from the
average. The overall qualitative behavior and the differences
between samples from different cameras are also evident in
the IPF-OL-2 retrievals [see Fig. 2(a) and (b)], which show
deviations from the average of a similar magnitude.

For a better quantitative comparison, we also calculate the
mean absolute deviation of �ρwN(λ) for low and medium
sensor-zenith angles (less than/equal to and larger than 20◦)
for both NOAA-MSL12 and EUMETSAT-IPF-OL-2 retrievals
in Table II. We note again that, due to the narrower swath
of OLCI (compared to VIIRS), the sensor-zenith angle only
reaches up to approximately 55◦ [see Figs. 1(a) and 2(a)],
less than the 60◦ threshold value used to identify the ques-
tionable retrievals [25]. While the magnitude of the devi-
ations is the same for both retrieval algorithms, NOAA-
MSL12 results appear to have somewhat lower absolute
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Fig. 1. Dependence of MSL12-derived �ρwN(λ) as a function of (a) sensor-zenith angle, (b) sample number along the scan, (c) solar-zenith angle, and
(d) relative-azimuth angle. The anomaly �ρwN(λ) is shown in the continuous and dashed colored lines for different OLCI bands. The number of Level-2
retrievals (black dotted-dashed lines) is indicated by the right ordinates. Large values of solar-zenith angle (>70◦, according to the corresponding MSL12 data
quality flag) in (c) are highlighted in a gray shade.

�ρwN(λ) deviations from the average. In Fig. 2, beyond
the camera patterns, especially in the westernmost cam-
era 1, IPF-OL-2 results also demonstrate broader underlying
solar- and sensor-zenith angle trends and a marked rela-
tive azimuth angle dependence. These results point to the
IPF-OL-2 geometric uncertainties, also documented in the
Collection-3 report (https://www.eumetsat.int/media/47794)
and by Zibordi et al. [8]; nevertheless, the missing BRDF
correction may also contribute to the trends. Overall, absolute
�ρwN(λ) is higher for lower wavelengths (blue bands), where
the reflectance ρwN(λ) is usually also higher over open
oceans [9], [10], [11].

Since the sample number more completely describes the
behavior of retrievals across the entire swath, we also show
the quantitative comparisons in �ρwN(λ) for the five regions
across the swath, roughly corresponding to the five cameras
of the OLCI sensor. The cross-track samples have been split
into five groups according to the sample numbers: [0–1599],
[1600–2549], [2550–3299], [3300–3999], and [4000–4859].
The results are given in Table III.

The solar-zenith angle dependence of anomaly �ρwN(λ)
is more uniform in both NOAA-MSL12 [see Fig. 1(c)] and
EUMETSAT-IPF-OL-2 [see Fig. 2(c)] retrievals. Similar to
the previous findings for VIIRS results [25], large solar-zenith

angle values (over 70◦) are associated with significant devi-
ations in ρwN(λ) spectra, pointing to poor retrievals. Thus,
the same threshold value of the solar-zenith angle of 70◦ in
MSL12 appears to be appropriate for OLCI retrievals. Inter-
estingly, the IPF-OL-2 retrievals are also significantly affected
when the solar-zenith angle exceeds 70◦ [see Fig. 2(c)].
We also see some underestimates relative to the average
ρwN(λ) spectra for low values of solar-zenith angle (less
than 30◦), especially notable in the IPF-OL-2 retrievals, possi-
bly exacerbated by the missing BRDF correction. For OLCI,
the values less than 30◦ of solar-zenith angle occur almost
always on the eastern side of the swath for relatively fewer
retrievals in the tropics that are often subject to medium or
high sun glint conditions. We note that, due to the Sentinel-3A
satellite flying in an orbit with a morning local equatorial
overpass time, and due to the OLCI camera tilt westwards
away from the sun glint reflection, values of the solar-zenith
angle for OLCI retrievals are always greater than ∼22◦.
We summarize the quantitative comparisons in �ρwN(λ) for
low (less than/equal to 30◦), intermediate (30◦–70◦), and high
(larger than 70◦) values of solar-zenith angle in Table IV.

The results for �ρwN(λ) dependence on the relative-azimuth
angle �φ are shown in Fig. 1(d) for MSL12 and in Fig. 2(d)
for IPF-OL-2. The angle �φ is defined as ranging from
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Fig. 2. Dependence of IPF-OL-2-derived �ρwN(λ) as a function of (a) sensor-zenith angle, (b) sample number along the scan, (c) solar-zenith angle, and
(d) relative-azimuth angle. The anomaly �ρwN(λ) is shown in the continuous and dashed colored lines for different OLCI bands. The number of Level-2
retrievals (black dotted-dashed lines) is indicated by the right ordinates. Large values of solar-zenith angle (>70◦) in (c) are highlighted in a gray shade.

TABLE III

NOAA-MSL12 AND EUMETSAT-IPF-OL-2 DERIVED MEAN ABSOLUTE DEVIATION OF �ρWN(λ) FOR THE FIVE REGIONS

ACROSS THE SCANNING SWATH WITH THE NUMBER OF LEVEL-2 RETRIEVALS USED FOR CALCULATIONS (NUM)

−180◦ to +180◦ and calculated as the difference between
the solar reflection and sensor viewing azimuth angles. Thus,
high sun glint conditions are possible for near-zero values
of relative azimuth angle �φ if solar- and sensor-zenith
angles are not too different. While MSL12 shows very low
relative-azimuth dependence except for a peak at around

−60◦, IPF-OL-2 shows significant biases across the range of
�φ ≈ −120◦ to +120◦ although the impact of the missing
BRDF correction may also contribute. The relative azimuth
angle of −60◦ is only encountered during summer months
over Arctic waters with relatively scarce retrievals, leading to
less robust baseline reference data. Over the Arctic regions,
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TABLE IV

�ρwN(λ) FOR THE SMALL, INTERMEDIATE, AND LARGE VALUES OF SOLAR-ZENITH ANGLE (θ0) WITH
THE NUMBER OF LEVEL-2 RETRIEVALS USED FOR CALCULATIONS (NUM)

satellite retrievals usually associated with large solar-zenith
angles and data quality are affected by a longer optical path,
contributing to higher variability of results. The same goes
for VIIRS results [25] since the number of retrievals strongly
depends on the relative azimuth angle, and there are a sig-
nificantly reduced number of retrievals for �φ around ±90◦,
which also results in more noisy retrievals for �φ values.
However, the IPF-OL-2 OLCI retrievals [see Fig. 2(d)] also
show a significantly reduced ρwN(λ) compared to the baseline
reference data when �φ is close to zero (likely sun glint
conditions), consistent with a similar reduction for low values
of solar-zenith angle [see Fig. 2(c)]. It is noted that, for
moderate sun glint contamination regions, both the MSL12 and
IPF-OL-2 data processing have used the sun glint correction
algorithm to improve satellite-derived ρwN(λ) spectra [50].

For a more complete picture, we also investigate the com-
bined dependence of retrievals corresponding to both the
solar-zenith angle and the number of samples across the
swath. Fig. 3(a) shows �ρwN(λ) at the short blue band
400 nm, �ρwN(400), as a function of both parameters from
MSL12. Recall that, for OLCI, low solar-zenith angles may
only occur near the easternmost part of the swath. As seen
in Figs. 1(c) and 2(c), large values of solar-zenith angle
(above 70◦) result in significant �ρwN(400) deviations. The
discontinuities in �ρwN(400) retrievals corresponding to the
five OLCI cameras are clearly visible as vertical bands (related
to sensor/detector performance), indicating that the depen-
dence on cross-swath sample number is more prominent than
the dependence on the solar-zenith angle, except for cases with
solar-zenith angles above 70◦. The results are quite similar
for �ρwN(λ) at other spectral bands, i.e., ρwN(443), ρwN(510),
and ρwN(560), as shown in Fig. 3(b)–(d), respectively, with
overall decreasing amplitude of the deviation from the baseline
ρwN(λ) for larger wavelengths λ, confirming correlation of
ρwN(λ) anomalies for different spectral bands [11].

The IPF-OL-2 retrievals show qualitatively similar results in
the combined solar-zenith angle and cross-swath sample num-
ber dependence (see Fig. 4). Here, retrievals corresponding to
the westernmost camera are significantly overestimated rela-
tive to the baseline reference data [consistent with Fig. 2(b)],

while retrievals near nadir are underestimated (in relative
terms). In addition, there are fewer retrievals for low solar-
zenith angles along the eastern part of the swath than those
from MSL12. It should be noted that large sun glint conta-
minations often have a significant impact on OLCI retrievals
for cases with the low solar-zenith angle for the eastward side
of the swath (i.e., region with highlighted by dashed ovals
in Fig. 4).

B. Dependence on the Ancillary Data Inputs

Next, we examine the impact of various physical parameters
on the stability and consistency of ocean color retrievals.
Since we have already demonstrated that both NOAA and
EUMETSAT retrieval algorithms produce more biased ocean
color data when the solar-zenith angle is >70◦, we restrict
the subsequent analysis to ≤70◦ to match the standard flag
recommendation.

The effect of the ocean surface wind speed is shown in
Figs. 5(a) and 6(a) for NOAA-MSL12 and EUMETSAT-IPF-
OL-2 retrievals, respectively. Both retrieval algorithms tend to
produce slightly elevated �ρwN(λ) spectra in windy condi-
tions. This is also consistent with earlier findings for VIIRS-
SNPP [25]. The origin of this increase is not firmly established.
Whitecaps, the most obvious culprit, have been shown to
have a negligible effect on MSL12-retrieved ρwN(λ) spectra
[47], [74]. Other possibilities include contributions from the
correction of sun glint [50] and computation of the Rayleigh
radiance (scattering by air molecules) contribution [75]. Both
of these rely on the model proposed by Cox and Munk [49]
to account for the sun glint and depend on the sea surface
roughness (which is directly related to the surface wind speed).
We also note that, while both algorithms produce a comparable
number of retrievals in low wind speed conditions, IPF-OL-2
retrievals are masked out by the WHITECAPS flag above wind
speeds of 12 m/s and are not recommended to be used under
such conditions. NOAA-MSL12 provides retrievals for all
wind speeds, including values above 12 m/s. The quantitative
values of mean absolute deviation of ρwN(λ) are summarized
in Table V for both data processing systems for values of
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Fig. 3. Dependence of MSL12-derived �ρwN(λ) on the sample number across the swath and the solar-zenith angle for (a) �ρwN(400), (b) �ρwN(443),
(c) �ρwN(510), and (d) �ρwN(560). High sun glint frequently affects OLCI retrievals with the low solar-zenith angle on the eastward side of the swath
(highlighted by dashed ovals). The vertical line indicates an approximate sample number corresponding to the nadir viewing direction, and the horizontal line
indicates the solar-zenith angle threshold at 70◦.

TABLE V

MEAN ABSOLUTE �ρwN(λ) FOR LOW-TO-MODERATE AND HIGH WIND
SPEEDS (WS) WITH THE NUMBER OF LEVEL-2 RETRIEVALS

USED FOR CALCULATIONS (NUM)

low-to-moderate (≤10 m/s) and high (>10 m/s) surface wind
speeds. In fact, the absolute values of deviations of NOAA-
MSL12-derived OLCI ρwN(λ) spectra are comparable to those

of VIIRS [25], certifying that MSL12 provides consistent,
high-quality ocean color retrievals from multiple satellite
data.

The dependence of the retrievals on the integrated mass
of water vapor in the atmospheric column shows almost
no deviation from the average for both retrieval algorithms,
indicating a consistent performance, as demonstrated in
Figs. 5(b) and 6(b) for MSL12 and IPF-OL-2, respectively.
Likewise, the sea-level atmospheric pressure has no significant
effect on the ρwN(λ) retrievals [see Figs. 5(c) and 6(c)]
although minuscule �ρwN(λ) increases are seen for very
low atmospheric pressures in both datasets, which occurs
for the two bluest bands for a small fraction of the total
number of retrievals. No significant deviation from the average
values is found with varying ozone amounts in either NOAA-
MSL12 or EUMETSAT-IPF-OL-2 data in Figs. 5(d) and 6(d),
respectively, except for slightly elevated biases at the extremes
of the ozone range, particularly for IPF-OL-2. We conclude
that both ocean color data processing systems produce sta-
tistically consistent �ρwN(λ) products with respect to the
ancillary data of the sea-level atmospheric pressure, water
vapor amount, and ozone concentration, while NOAA-MSL12
provides satisfactory and consistent retrievals in very windy
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Fig. 4. Dependence of IPF-OL-2-derived �ρwN(λ) on sample number across the swath and the solar-zenith angle for (a) �ρwN(400), (b) �ρwN(443),
(c) �ρwN(510), and (d) �ρwN(560). High sun glint frequently affects OLCI retrievals with the low solar-zenith angle on the eastward side of the swath
(highlighted by dashed ovals). The vertical line indicates an approximate sample number corresponding to the nadir viewing direction, and the solar-zenith
angle threshold at 70◦ is also noted with a horizontal line.

conditions >12 m/s, yet the high wind retrievals are masked
in EUMETSAT-IPF-OL-2.

C. Dependence on the Intermediate Retrieval Parameters

Finally, we examine the dependence of the retrieved ρwN(λ)
spectra on various other parameters characterizing the retrieval
conditions. The sun glint coefficient, derived from the Cox
and Munk [49] model, encompasses the solar- and sensor-
zenith angles, as well as the wind speed, which determines
the surface roughness [50]. All of these factors influence the
intensity of the solar reflection from the water surface, as seen
by the satellite. The NOAA-MSL12 retrievals show a very
slight increase of ρwN(λ) in moderate sun glint conditions
[see Fig. 7(a)]. We note that the vast majority of retrievals for
both MSL12 and IPF-OL-2 occur in near-zero glint conditions
(see dashed-dotted lines in Figs. 7(a) and 8(a), respectively).
In fact, for MSL12, 74% or retrievals have a glint coefficient
less than 0.0001, whereas, for IPF-OL-2, the fraction is even
higher at 83%. Thus, IPF-OL-2 has relatively fewer retrievals
at medium glint conditions. The negative �ρwN(λ) seen in
IPF-OL-2 results in these conditions are countered by a small
positive �ρwN(λ) for the vast majority of retrievals with near
zero glint coefficient [see Fig. 8(a)]. This is consistent with

the results for low solar-zenith angle [see Fig. 2(c)] and low
values of the relative azimuth angle [see Fig. 2(d)]. Since glint
coefficient data are not included in the EUMETSAT-IPF-OL-2
product data, we have used the corresponding glint coefficient
data from NOAA-MSL12 to derive the results in Fig. 8(a).
The glint coefficient is computed using the Cox and Munk [49]
model, which primarily depends on the solar-sensor geometry,
as well as sea surface wind speed. Thus, it is reasonable to use
the same glint coefficient data for the analysis of both datasets.
However, some uncertainty may be introduced in the analysis
in Fig. 8(a) due to slight differences in the ancillary sea
surface wind speed data used to estimate the glint coefficient
by NOAA-MSL12 and EUMETSAT-IPF-OL-2.

The AOD quantifies the aerosol density in the atmosphere
above the retrieval location and is derived as an internal para-
meter within the atmospheric correction process [9], [10], [60].
The denser aerosol cover makes ocean color data retrievals
more challenging [9], [10], [11], or even impossible, if the
aerosols are sufficiently dense (such as thick smoke and dust).
The results for �ρwN(λ) dependence on AOD are displayed in
Figs. 7(b) and 8(b) for NOAA-MSL12 and EUMETSAT-IPF-
OL-2, respectively. MSL12 produces slightly reduced ρwN(λ)
at the blue bands with higher AOD (>∼0.2) and with very
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Fig. 5. �ρwN(λ) dependence on (a) surface wind speed, (b) integrated water vapor mass, (c) atmospheric pressure at the sea surface, and (d) total column
ozone amount for MSL12 retrievals. �ρwN(λ) is shown in the continuous and dashed colored lines for different OLCI bands. The number of Level-2 retrievals
(black dotted-dashed lines) is indicated by the right ordinates.

TABLE VI

�ρwN(λ) FOR DIFFERENT AOD RANGES WITH THE NUMBER OF LEVEL-2 RETRIEVALS USED FOR CALCULATIONS (NUM)

low AOD (<∼0.03). IPF-OL-2 shows relatively consistent
�ρwN(λ) at most AOD levels except for a sudden positive
bias in all bands for AOD < ∼0.015 [see Fig. 8(b)]. The
number of retrievals for MSL12 is relatively stable through
the low AOD range and becomes significantly reduced closer
to AOD∼0.3. For IPF-OL-2, the number of retrievals is very
stable throughout and only slightly smaller closer to the
lowest AODs. The results in �ρwN(λ) for low (≤0.1), medium

(0.1–0.2), and relatively high AODs (>0.2) are summarized in
Table VI.

The effects of cloud shadow/stray light have been shown to
have a considerable impact on ocean color retrievals [34], [46].
We estimate these effects by looking at how the proximity
to clouds affects satellite-derived ρwN(λ). Figs. 7(c) (NOAA-
MSL12) and 8(c) (EUMETSAT-IPF-OL-2) show somewhat
higher reflectance anomaly �ρwN(λ) spectra for retrievals
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Fig. 6. Dependence of �ρwN(λ) on (a) wind speed, (b) integrated water vapor mass, (c) atmospheric pressure at the sea surface, and (d) total column ozone
amount for IPF-OL-2 retrievals. �ρwN(λ) is shown in the continuous and dashed colored lines for different OLCI bands. The number of Level-2 retrievals
(black dotted-dashed lines) is indicated by the right ordinates.

within ∼5 km from clouds, consistent with the earlier results
for VIIRS [25]. Thus, more conservative stray light masking
may lead to slightly more accurate (but often insignificant)
ρwN(λ) spectra, however, at a cost of significantly reduced
number of retrievals [34].

Finally, we also investigate if the deviations of ρwN(λ)
spectra at individual spectral bands are correlated with the
overall quality of the retrieved ρwN(λ) spectra, as evaluated
by the data quality assurance (QA) score [76]. The QA score
evaluates the ρwN(λ) spectra by comparing them against a
library of known ρwN(λ) spectra characterizing the majority
of global waters [76]. Values of the QA score used in this
analysis are calculated separately for NOAA-MSL12- and
EUMETSAT-IPF-OL-2-produced ρwN(λ) spectra. The results
of this analysis are shown in Fig. 7(d) for NOAA-MSL12
and Fig. 8(d) for EUMETSAT-IPF-OL-2 retrievals. Unsur-
prisingly, both algorithms show that ρwN(λ) spectra are sig-
nificantly reduced to below-average values when the QA
score is low (e.g., QA score < ∼0.6), with blue bands
again having the largest deviations by the absolute value,
especially in the EUMETSAT-IPF-OL-2 retrievals. The results
in Figs. 7(d) and 8(d) show that the QA score is an effective
data quality measure for satellite ocean color products.

D. Impact on Derived Chl-a Concentration

The ρwN(λ) spectra are used to derive a number of
ocean/water property products, e.g., Chl-a concentrations [29],
[54], [55], which could be impacted by any systematic biases

in ρwN(λ) spectra. However, the algorithms for derived quanti-
ties usually rely on reflectance differences or ratios in different
bands; therefore, the effect of biases at individual bands is
not obvious. We choose to focus on Chl-a concentration
as the most commonly used parameter quantifying global
phytoplankton productivity. Due to a wide range of Chl-a,
spanning several orders of magnitude, and skewness of fre-
quency distribution, we opt for median anomaly instead of
mean anomaly, as a more appropriate measure of statistical
consistency [25]. Chl-a derived by the two processing systems
is produced by different algorithms. NOAA-MSL12 has used
the OC3V algorithm [54] and, more recently, the ocean color
index (OCI) algorithm [29], while the EUMETSAT-IPF-OL-2
data include Chl-a produced by the OC4ME algorithm
[70], [71] combined with the CI Chl-a algorithm, introduced
in the Operational Baseline Collection-3 (Collection-3 Report,
EUMETSAT, 2021).

Fig. 9(a) shows the dependence of the three Chl-a products
on the sample number across the swath. Here, the differences
among the five OLCI cameras are much less obvious compared
to ρwN(λ) spectra in Figs. 1(a) and 2(a). Nevertheless, IPF-
OL-2-derived Chl-a (using OC4ME) is very slightly (but
systematically) lower (by about 0.01 mg/m3) on the eastern
part of the swath (and the number of retrievals is also lower
there).

The dependence of Chl-a products on the solar-zenith angle,
as shown in Fig. 9(b), reveals a somewhat different behavior.
While all three Chl-a algorithms are practically unaffected by
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Fig. 7. �ρwN(λ) as a function of (a) sun glint coefficient, (b) AOD, (c) distance from the nearest cloud, and (d) QA score for MSL12 retrievals. The
anomaly �ρwN(λ) is shown in the continuous and dashed colored lines for different OLCI bands. The number of Level-2 retrievals (black dotted-dashed lines)
is indicated by the right ordinates.

any small deviations in ρwN(λ) spectra up to the solar-zenith
angle of 70◦, all three Chl-a algorithms produce significant
biases when the solar-zenith angle exceeds this value. This
again solidifies the choice of 70◦ as an appropriate threshold
for the solar-zenith angle.

Both NOAA-MSL12 and EUMETSAT-IPF-OL-2 retrieved
ρwN(λ) show slightly increased ρwN(λ) in windy condi-
tions [see Figs. 5(a) and 6(a)]. However, the impact on the
derived Chl-a is quite minimal, as results shown in Fig. 9(c)
for all three Chl-a algorithms. While the EUMETSAT-IPF-
OL-2 ρwN(λ) has no retrievals for high wind speeds (>12 m/s,
due to the application of WHITECAPS flag), it has slightly
more retrievals than NOAA-MSL12 in less windy conditions
(mainly due to differences in cloud and cloud shadow/stray
light mask/flags).

Finally, in Fig. 9(d), we show that ρwN(λ) retrievals with
poor spectral consistency (as indicated by low values of the
QA score; see Figs. 7(d) and 8(d)) do not necessarily result in
excessive biases in the derived Chl-a for the OCI algorithm,
indicating that the OCI algorithm has a much better perfor-
mance for noisy ρwN(λ) spectra (i.e., less sensitive to ρwN(λ)
errors) over clear oceans [29]. There are obviously degraded
Chl-a retrievals from both OC3V and OC4ME algorithms for
cases with low QA score values [see Fig. 9(d)], consistent with
results from the previous study [29].

IV. DISCUSSION

The analysis of NOAA-MSL12 processed Sentinel-3A
OLCI data shows that results are similar to the earlier analysis
of MSL12 VIIRS data [25], at least qualitatively. Slight
increases in ρwN(λ) for cases of high wind speeds and pixels
close to the clouds are not surprising. Also, degradation of
retrievals for high solar-zenith angles is expected. In fact,
the most prominent difference from earlier MSL12 VIIRS
result analysis directly relates to the variations between the
sensor designs: potential striping artifacts in VIIRS data [37]
are replaced by differences among the OLCI cameras and
detectors within the cameras across the swath width [38], [39].
Based on our analysis, differences among the OLCI cameras
and detectors are not completely accounted for by either of
the two ocean color data processing systems and point to the
need for further refinement to reduce or eliminate this effect.

Overall, both NOAA-MSL12 and EUMETSAT-IPF-OL-2
algorithms show reasonable and similar consistency with
NOAA-MSL12 producing smaller deviations from the aver-
age ρwN(λ) values. EUMETSAT-IPF-OL-2 results, however,
demonstrate underlying dependence on solar and view geome-
tries, which have been documented in the Collection-3
report [https://www.eumetsat.int/media/47794] and a recent
study [8]. In addition, EUMETSAT-IPF-OL-2 results are
also subject to the missing BRDF correction. An additional
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Fig. 8. Dependence of �ρwN(λ) on (a) sun glint coefficient, (b) AOD, (c) distance from the nearest cloud, and (d) QA score for the IPF-OL-2 retrievals.
The anomaly �ρwN(λ) is shown in the continuous and dashed colored lines for different OLCI bands. The number of Level-2 retrievals (black dotted-dashed
lines) is indicated by the right ordinates.

IPF-OL-2 issue is in the apparent underestimate of ρwN(λ)
spectra and the reduction of the number of retrievals for
moderate sun glint conditions [see Fig. 8(a)], which is consis-
tent with similar underestimates dependent on the geometry:
for low solar-zenith angle [see Fig. 2(c)], near zero relative
azimuth angle [see Fig. 2(d)], and retrievals on the eastern
part of the OLCI swath. Both the MSL12 and IPF-OL-2
data processing systems use the Wang and Bailey [50] sun
glint correction algorithm, which, with MSL12, has also been
successfully applied to SeaWiFS, MODIS, and VIIRS global
ocean color product retrievals. It is also noted that some biases
from EUMETSAT-IPF-OL-2 results related to the glint Sun-
sensor geometry may be partly due to the lack of correction
for the BRDF effect.

To evaluate the effects of BRDF correction, we produced
global ocean color Level-2 data from four days of Sentinel-3A
OLCI Level-1B data (January 1, April 1, July 1, and October 1,
2019) using the NOAA MSL12 with and without the BRDF
correction (for both � and f/Q factors) and compared the
results. Overall, skipping the BRDF correction results in
higher ρwN(λ), especially in the blue part of the spectrum.
However, the effect is not spatially uniform—it is larger in
the tropics and away from high glint areas (the western part
of the swath). We performed a quantitative evaluation for the
four days of data using the regular MSL12 Level-2 data with
the BRDF correction included as the baseline. The results are

shown in Fig. 10, where the effect of skipping the BRDF
correction is plotted with respect to three retrieval parame-
ters. Since skipping the BRDF correction produces higher
reflectance, we subtracted the average differences for this
figure to better visualize the trends and compare them with the
EUMETSAT IPF-OL-2 results from Sections III-A and III-C.
The average differences in ρwN(λ) are given as follows: 0.0381
(Oa01, 400 nm), 0.0351 (Oa02, 413 nm), 0.0276 (Oa03,
443 nm), 0.0185 (Oa04, 490 nm), 0.0105 (Oa05, 510 nm),
0.0047 (Oa06, 560 nm), 0.0008 (Oa07, 620 nm), and 0.0005
(O08, 665 nm). From Fig. 10(a), we see that skipping the
BRDF correction, on average, lowers ρwN(λ) on the eastern
side of the swath, relative to higher ρwN(λ) in the western
part, somewhat similar to the EUMETSAT IPF-OL-2 results
in Fig. 2(b). Since the BRDF effect in general is stronger
in the tropics, it also appears as elevated ρwN(λ) for lower
values of the solar-zenith angle [see Fig. 10(b)] compared to
the baseline data. This is in contrast to the IPF-OL-2 results
in Fig. 2(c). However, the results in Fig. 2 were obtained
by using the IPF-OL-2 baseline data, which also lacked the
BRDF correction. Finally, Fig. 10(c) shows that skipping the
BRDF correction can lead to overestimated ρwN(λ) in zero
sun glint conditions and underestimates in moderate to high
glint conditions, similar to IPF-OL-2 results seen in Fig. 8(a).
Overall, it appears that at least some of the deviations seen
in the IPF-OL-2 data are very likely due to the missing
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Fig. 9. Dependence of median �Chl-a on (a) sample number across the swath, (b) solar-zenith angle, (c) wind speed, and (d) QA score. Large values of
solar-zenith angle (>70◦, according to the corresponding MSL12 data quality flag) in (b) are highlighted in a gray shade. The number of Level-2 retrievals
is indicated by the black and blue dash-dotted lines for NOAA-MSL12 and EUMETSAT-IPF-OL-2, respectively.

BRDF correction. This also confirms the requirement to apply
the full BRDF correction in validation analyses.

Results also show that EUMETSAT-IPF-OL-2 generally has
somewhat more retrievals (∼25%) compared with those from
NOAA-MSL12 (see Tables II–VI). However, more numerous
EUMETSAT-IPF-OL-2 Level-2 retrievals do not translate into
a wider area coverage in the daily Level-3 9-km binned data.
In fact, both datasets produce a nearly identical number of
filled 9-km bins in the daily global Level-3 data though their
coverages do not completely overlap. NOAA-MSL12 has bet-
ter coverage of moderate sun glint areas, while EUMETSAT-
IPF-OL-2 has more retrievals in areas with heavy aerosol
presence and in higher latitudes. The difference in the total
number of Level-2 retrievals between the two datasets stems
mainly from the density of Level-2 retrievals in the areas
with sparse cloud cover: NOAA-MSL12 has a somewhat more
conservative cloud masking and cloud shadow/stray light flags
excluding more Level-2 data compared to the EUMETSAT-
IPF-OL-2. This enables it to provide a slightly better statistical
consistency in the results while retaining the coverage in the
global 9-km binned Level-3 data.

We also analyzed an earlier version of the EUMETSAT-
IPF-OL-2 derived data (Operational Baseline Collection-2;
https://www.eumetsat.int/media/43298) using the same
methodology and found that, over the global open ocean,
results from the Collection-2 were generally very similar to
those from the analysis of the latest version (Collection 3).

This is different from a recent evaluation study over coastal
regions [8].

As noted in the previous study [25], our analysis also has
certain limitations. First, it only gives comparisons against
the same processor-averaged retrievals. The baseline refer-
ence ρ

(REF)
wN (λ) values cannot be ascertained as a “ground

truth,” i.e., the results need to be analyzed in relative terms
of trends away from the average. Second, it only gives
correlations of systematic biases to some relevant retrieval
parameters, which, sometimes, do not necessarily identify
the exact source of such biases. Third, the set of relevant
retrieval parameters used is not exhaustive. Therefore, it is
possible that there are hidden biases with respect to other
parameters or parameter combinations. Fourth, any systematic
ρwN(λ) biases affecting all parameters equally or any gradual
ρwN(λ) changes (such as changes due to sensor degrada-
tion or imperfect calibration) will not be revealed by this
approach.

Nevertheless, our analysis represents a significant test for
ocean color data quality and highlights any systematic ρwN(λ)
biases in the ocean color retrieval algorithms with respect to a
wide range of retrieval parameters. While this analysis covers
one year (2019) of global OLCI ocean color data, we do not
expect the results to be significantly altered if data from other
time periods were analyzed, so long as the same retrieval
algorithms are used. In fact, we used VIIRS data in 2016 for
our previous study [25].
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Fig. 10. Dependence of the difference �ρwN(λ) between the NOAA MSL12
results without the BRDF correction and with the BRDF correction (the
baseline) on (a) sample number across the swath, (b) solar-zenith angle, and
(c) glint coefficient. Four days of global Sentinel-3A OLCI data were used
in this analysis: January 1, April 1, July 1, and October 1, 2019. For better
illustration and comparison with EUMETSAT IPF-OL-2 results, the average
difference is subtracted for each OLCI band.

Finally, we note that the ocean color retrieval algorithms
are being continuously refined and improved. Therefore, this
study represents a snapshot analysis of the available data at a
certain point in time. Whenever the Sentinel-3 OLCI mission-
long data are reprocessed with updated retrieval algorithms,
improvements in data consistency are expected. Nevertheless,
this study provides a comprehensive test for systematic biases
in the two datasets analyzed and is, therefore, expected to
help with further improvements of the corresponding retrieval
algorithms.

V. CONCLUSION

We have employed an established methodology to analyze
the statistical consistency of two distinct ocean color datasets,

obtained from Sentinel-3A OLCI data for the entire 2019 year
by two different data retrieval systems—NOAA-MSL12 and
the corresponding ocean color data retrieval system by
EUMETSAT-IPF-OL-2 (the most recently reprocessed data,
i.e., the Operational Baseline Collection-3). We analyzed the
deviations from average ocean color product values or anom-
alies and searched for their correlations to various retrieval
parameters. Overall, the deviations are small and generally
within the acceptable accuracy range. Both retrieval algorithms
produce a somewhat elevated ρwN(λ) spectra for large wind
speeds (>10 m/s) affecting all bands though EUMETSAT-IPF-
OL-2 retrievals are masked out by the WHITECAPS flag for
wind speeds greater than 12 m/s. Increased ρwN(λ) is also
seen in the regions that are close to clouds, likely due to stray
light contaminations. In addition, the NOAA-MSL12 data
processing system underestimates ρwN(λ) spectra at the blue
bands for cases with dense aerosols, and EUMETSAT-IPF-
OL-2 produces more retrievals in such conditions. Likewise,
some differences among cameras spanning OLCI swath width
are seen in both datasets.

Two notable differences between the two processors, likely
intertwined, lie in EUMETSAT-IPF-OL-2’s underlying depen-
dence on solar and view geometries, and its biased retrievals
in moderate sun glint. In sun glint areas, where ρwN(λ)
spectra are somewhat underestimated in EUMETSAT-IPF-
OL-2 results, significantly fewer retrievals are also recorded.
This effect is also seen for small values of solar-zenith
angle (occurring only in the tropics) and cases with low
relative azimuth angle values (directly related to sun glint
conditions), which affects retrievals on the eastern part of
the swath (which is the part of swath exposed to sun glint
conditions in the tropics due to Sentinel-3A flying in an orbit
with morning local overpass time). Nevertheless, some of
these apparent biases in the EUMETSAT-IPF-OL-2 results are
likely to be partly due to the BRDF effects. The full BRDF
correction is not applied to EUMETSAT-IPF-OL-2 ρwN(λ)
products because MERIS/OLCI applications have historically
focused on regional users and the existing BRDF correction
is not suitable for complex turbid waters. For the global open
ocean, however, our results have clearly demonstrated that it is
important to include full BRDF correction. Activities are now
ongoing to develop a BRDF correction applicable to clear and
complex waters. Finally, any systematic deviations in ρwN(λ)
spectra relative to the baseline values usually translate into
relatively small deviations in Chl-a results with the OCI Chl-
a algorithm for clear open oceans. For low-quality ρwN(λ)
spectra, Chl-a data are somewhat degraded with both OC3V
and OC4ME Chl-a algorithms.

We have conducted a thorough statistical evaluation of two
distinct global OLCI ocean color datasets over the global
open ocean, searching for systematic biases with respect to
the most relevant parameters that are used in ocean color
data processing, confirmed the overall statistical consistency
of both datasets, and identified the regions of these parameters
where improvements are possible. We anticipate that our
analysis will be helpful in the design and improvement of
satellite ocean color retrieval algorithms for OLCI specifically.
Finally, the methodology used in this study is generally
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applicable to the statistical evaluation of other ocean color
retrieval algorithms and corresponding datasets.
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